

Squares, Cubes, powers and roots GCSE MATHS

Name: ______ Teacher: ______

Learning objectives

By the end this pack you will be able to:

- 1. Find square/cube numbers up to 200
- 2.Use the laws of indices to simplify and evaluate numerical expressions involving powers
- 3.Convert between ordinary numbers and numbers in standard index form
- 4. Calculate with numbers in standard index form

Key Points

POWERS AN	D ROOTS 'C	OLLECT A LE	TTER'				
		START	1000	8	32	49	64
		Р	0	U	E	Т	А
	Γ	2 ³	9 ²	5 ²	7 ³	6 ³	2 ⁴
				•			
		27	121	36	100	1	125
		E	D	L	N	Н	1
		4 ³	2 ⁵	5 ³	10 ³	6 ²	0 ²
							_
	_	216	16	343	0	25	81
	_	1	С	R	S	<u>T</u>	R
		10 ²	1 ⁵	END	7 ²	3 ³	11 ²
1)	√25	:	3 ²	√36	2 ³	√1(00
2)	√100		4²	2 ²	√81	√1:	21
3)	5²		4 ² + 2 ²	√144	√25+√3	6 1 ^{3 .}	+ 3³
4)	√36 - 1	V4 4 ² - 2 ²		1 ³ + 2 ³	v100 - 3	32	1 ³ + 1 ²

SQUARES, CUBES, POWERS AND ROOTS

EXAM QUESTIONS

- Write down the values of
 - (a) 4²
 - (b) $\sqrt{81}$
- 2. Work out the value of 10^5
- 3.
- (a) Work out 3.7^2
- (b) Work out the cube of 4
- (c) Work out $3 \div 0.7^2$
 - (i) Write down the full calculator display.
 - (ii) Give your answer to the nearest whole number.

4. (a) Calculate
$$2.7^2 + \sqrt{3.5}$$

(b) Calculate the cube of 4.2

INDEX LAWS

1. Write each of these as sim	ply as possible using indices	5.	
a) 2x2x2x2x2	b) y x y x y x y	c) 9x9x9	d) 8x8x8x8x8x8x8
2. Write down the value of th	ne missing index.		
a) $2^2 \times 2^3 = 2^x$	b) $3^8 \times 3^x = 2^{12}$	c) $5^2 \times 5^x = 5^9$	d) $2^x \times 2^3 = 2^7$
e) $(2^2)^4 = 2^x$	f) $(2^6)^x = 2^{18}$	g) $\frac{3^9}{3^2} = 3^x$	h) $\frac{4^8}{4^x} = 4^5$
3. State whether each equati	on is TRUE or FALSE.		
a) $7^2 \times 7^6 = 7^8$	b) $\frac{8^3}{8} = 8^2$	c) $(5^4)^2 = 5^6$	

EXAM QUESTIONS

- Simplify
 - (a) $c \times c \times c \times c$
 - (b) $d^3 \times d^2$

2. Simplify

(a) $w^6 \times w^2$ (b) $x^3 \div x^5$

3. Simplify

(b)
$$d^3 \times d^2$$

4. Simplify

 $x^5 \times x^{-2}$

EXAM QUESTIONS

- 1. $0.3 \times 100 + 2.4 \times 10$
- Magazines are stored in piles of 100. Each magazine is 0.4 cm thick. Calculate the height of one pile of magazines.
- 3. Jane says,

"To multiply a number by 10, put a zero on the end."

She uses her rule to write these examples.

A

$$53 \times 10 = 530$$
 B
 $0.53 \times 10 = 0.530$

 C
 $530 \times 10 = 5300$
 D
 $5.3 \times 10 = 5.30$

- (a) State which of Jane's examples are incorrect.
- (b) Choose one of Jane's incorrect examples.

Write the example in the box below with the correct answer.

 \times	10 =	

INDEX FORM (INDICES) WORKSHEET

Simplify

1.	3 x 3 x 3	2.
3.	6 x 6 x 2 x 2 x2	4.
5.	7 x 7 x 8 x 9 x 9 x 9	6.

- . 5 x 5 x 5 x 5 x 5 x 5
- . 7x7x7x8x8x8x8
- . 3 x 4 x 3 x 4 x 5 x 5

Simplify the following

7 ²	x	7 5	=	15 ¹⁰	÷	15 ⁷	=
7 ²	x	76	=	10 ¹⁰	÷	10 ¹	=
7 11	x	7 ¹⁵	=	16 ¹³	÷	16 ⁴	=
15	x	1 3	=	19 ¹⁵	÷	19 ⁶	=
10 ⁸	x	10 ¹²	=	2 ¹⁵	÷	2 ¹⁰	=
17 ⁸	x	17 ¹⁴	=	16 ¹⁷	÷	16 ²	=
13 5	x	13 ¹⁶	=	5 ²⁰	÷	5 5	=
19 ²	x	19 ¹³	=	6 ¹⁴	÷	6 ⁷	=
64	x	6 ¹	=	15 ¹⁴	÷	15 ⁸	=
17 ¹	x	17 ²⁰	=	1 14	÷	1 3	=

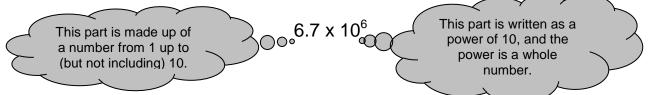
Now try these:

1. $(7^2)^3$ 2. $(3^5)^3$ 3. $(x^2)^{10}$ 4. $(11^5)^5$ 5. $(y^2)^{20}$ 6. $(17^5)^4$

Extension:

 (c) $x^7 \times x^9$ (h) $x^6 \times x^{12} \times x^3$

 (d) $m^4 \times m^3$ (i) $(x^3)^4 \times x^5$


 (e) $(m^4)^3$ (j) $m^4 \times (m^5)^2 \times m^3$

MULTIP	LYING AND DIVID	ING BY	POWERS OF 10	<u>)</u>			
1	891.8	Х	10	23	L 73.66	•	10
2	59.15	Х	100	22	2 70.07	•	10
3	63.51	Х	100	23	4 7.5	•	100
4	3.107	Х	100	24	261.6	÷	10
5	0.7303	Х	10	25	6 0.1987	• •	10
6	0.7146	Х	1000	26	5 1.914	•	10
7	5.638	Х	1000	27	0.8249	•	10
8	539.7	Х	100	28	3 552.5	•	100
9	757.8	Х	100	29) 105.6	•	10
10	2.023	Х	100	30) 695	•	100
11	970.9	Х	0.1	33	L 756	•	10
12	942.3	Х	0.1	32	2 54.6	•	100
13	181.8	Х	0.01	33	3 98	•	10
14	0.7792	Х	0.1	34	9364	•	1000
15	0.7353	Х	0.01	35	5 391	•	10
16	558.6	Х	0.1	36	5 34010	•	1000
17	51.95	Х	0.01	37	627100	•	1000
18	0.9222	Х	0.1	38	6 26000	•	1000
19	359.6	Х	0.1	39	77400	•	1000
20	849.7	Х	0.1	4(86.19	•	1000

Very Big and Very Small Numbers

Mathematicians, scientists and engineers (and your calculator) prefer to write and work with very large and very small numbers in standard form.

A number is in standard form when it is written like this:

You could think of 1000 as being 1 x 10 x 10 x 10 and write it as 1 x 10^3 .

You could think of 10 000 as being $1 \times 10 \times 10 \times 10 \times 10$ and write it as 1×10^4 .

Complete the table below, the first three rows have been completed for you.

Number	Number in standard form	
1 000 000	1 x 10 ⁶	The power of ten is the
100 000	1 x 10 ⁵	(place value of)
10 000	1 x 10 ⁴	the first
1 000		significant
100		
10		
1		As the number
0.1		• is less than
0.01		one the power
0.001		

200 could be written as 2×10^2 .

- 300 could be written as 3×10^2 .
- 250 could be written as 2.5×10^2 .

Complete the table on the left, the first three rows have been completed for you.

Number	Number in standard form
200	
230	
300	
399	
400	
415	
500	
550	
9870	

Standard Form

1. Convert these numbers into standard form

а	0.005	g	0.004 3
b	0.0002	h	0.000 056
С	0.004	i	0.000 131
d	0.000 003	j	0.030 03
е	0.000 000 8	k	0.0561
f	0.2	Ι	0.0042

2. Write these numbers as ordinary numbers

а	5×10^{-2}	g	5.4×10^{-2}
b	6×10^{-4}	h	8.6×10 ⁻⁶
С	2×10^{-5}	i	9.4×10 ⁻⁶
d	7×10^{-7}	j	1.02×10^{-3}
е	9×10^{-1}	k	4.04×10^{-6}
f	8×10^{-4}	Ι	8.39×10 ⁻⁹

3. Convert these numbers to standard form (there are a mixture of large and small numbers)

а	0.003	g	45 000
b	5 000	h	3 700
С	0.4	i	0.0925
d	7 000 000	j	18 500
е	20 000	k	258 000 000
f	0.000 5	Ι	0.000 156

4. Write these numbers as ordinary numbers

а	6×10^{-6}	g	8.2×10^{-1}
b	6×10^{6}	h	9.5×10^{-4}
С	1×10^{-3}	i	5.55×10^{8}
d	1×10^{3}	j	6.47×10^{-2}
е	8×10^5	k	3.001×10^{2}
f	8×10^{-5}	I	9.1×10^{10}

Star Wars Standard Form

The Millennium Falcon flies at the speed of sound normally, but when it

goes into hyper-drive flies at the speed of light.

The Speed of Sound is 3.4×10^2 metres per second.

The Speed of Light is 3×10^8 metres per second.

Calculate how long these journeys would take the Millennium Falcon, giving your answers in standard form and using appropriate units of

time:

From	То	Distance (kilometres)	Hyper- drive used?	Time Taken (seconds)	Time Taken (hours/minutes)
Hoth	Naboo	1.224 x 10 ⁷	No		
Tatooine	Dagobah	3.06 x 10 ⁶	No		
Endor	Ord Mantell	1.35 x 10 ¹³	Yes		
Dantooine	Kashyyyk		No	1.2 x 10 ⁴	
Bespin	Kessel		Yes	7.5 x 10 ³	

The Millennium Falcon has developed a fault in the hyper-drive meaning that it can't go at full speed.

It travels from Coruscant to Mon Calamari, a distance of 1.1664 x 10¹³ kilometres in 17 hours 45 minutes using the faulty hyper-drive. How fast is the Millennium Falcon going whilst the fault exists?

What percentage of the full hyper-drive speed is this?